Zuschriften

Cycloadditions

Phosphane-Free Rhodium Catalyst in an Anionic Micellar System for [4+2] Annulation of Dienynes**

Dai Motoda, Hidenori Kinoshita, Hiroshi Shinokubo,* and Koichiro Oshima*

Cationic complexes often exhibit marked catalytic activity in a number of transition-metal-catalyzed reactions because they have more available vacant sites for coordination of

[*] Prof. Dr. H. Shinokubo
Department of Chemistry
Graduate School of Science, Kyoto University
Sakyo-ku, Kyoto 606-8502 (Japan)
PRESTO, Japan Science and Technology Agency (JST)
Fax: (+81) 75-753-3970
E-mail: hshino@kuchem.kyoto-u.ac.jp
D. Motoda, H. Kinoshita, Prof. Dr. K. Oshima
Department of Material Chemistry
Graduate School of Engineering, Kyoto University
Nishikyo-ku, Kyoto 615-8510 (Japan)
Fax: (+81) 75-383-2438
E-mail: oshima@fml.kuic.kyoto-u.ac.ip

[**] This work was supported by a Grants-in-Aid for Scientific Research (No. 14703026) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan. We thank Dr. Yuki Yamazaki and Dr. Katsuaki Mizukoshi (Osaka Prefectural College of Technology) for ion-electrode analysis. H.K. acknowledges the Research Fellowships of the JSPS for Young Scientists.

Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author.

substrates than the corresponding neutral complexes. In particular, cationic rhodium catalysts are frequently employed as homogeneous catalysts for hydrogenation, asymmetric hydrogenation, hydrosilylation, hydride transfer, cycloaddition, and so forth. Cationic rhodium catalysts are usually prepared by treatment of the corresponding chloro complex with silver salts with outer-sphere counteranions, such as BF₄ or PF₆. Herein we report a phosphane-free cationic rhodium species that forms a highly active catalyst in an aqueous anionic micellar system for the [4+2] annulation of dienynes.

We investigated the rhodium-catalyzed intramolecular [4+2] annulation of 1,3-dien-8-ynes **1a** in aqueous media (Table 1). [4,5] This process often employs cationic rhodium complexes as the catalyst. The presence of phosphane ligands is also crucial, and it was reported that 1,4-diphenylphosphanylbutane provides a highly efficient catalyst. [5g]

A water-soluble rhodium catalyst was prepared in situ from [{RhCl(cod)}₂] and the trisodium salt of tris(*m*-sulfonatophenyl)phosphane (tppts). ^[6,7] The addition of dienyne **1a** to a solution of the catalyst at 50 °C provided the cycloaddition product **2a** in 51 % yield after stirring for 12 h (Table 1, entry 1). The aromatized product **3a** was also obtained. The reaction system was heterogeneous, and the addition of surfactants was examined. ^[8] An anionic surfactant, sodium dodecyl sulfate (SDS), enhanced the efficiency of the reaction, and the yield of **2a** was improved to 91 % (Table 1, entry 4). Cationic and neutral surfactants did not work as effectively as SDS (Table 1, entries 2 and 3).

We then tried to lower the reaction temperature to room temperature (Table 1, entries 5-12). None of the cycloaddition product was observed at 25°C with the catalyst combination of [{RhCl(cod)}₂]-tppts (Table 1, entry 5). The use of diphenylphosphanylbutane (dppb) yielded a small amount of 2a (Table 1, entry 6). After several experiments, we found that the rhodium chloride dimer without any phosphane ligands led to quantitative conversion (Table 1, entry 7). Mixing the rhodium chloride dimer and SDS in water afforded a clear yellow homogeneous solution, although [{RhCl(cod)}2] itself is insoluble in water. Several rhodium complexes were tested in 20-min reactions (Table 1, entries 8-12). The Wilkinson complex and [{RhOH(cod)}₂] did not exhibit catalytic activity (Table 1, entries 9 and 10, respectively). The norbornadiene (nbd) complex proved to be a more efficient catalyst precursor than the corresponding cyclooctadiene complex (Table 1, entry 11). Almost quantitative conversion within 20 min at room temperature was observed. In contrast, the ethylene complex did not work at all (Table 1, entry 12). On the basis of the difference between these rhodium complexes we speculate that the alkene ligand is still associated with the rhodium atom in water.

With an efficient reaction protocol in hand for the rhodium-catalyzed [4+2] annulation in water, the reaction with several dienynes **1** was examined. Table 2 summarizes the results. Hydrophilic dienyne **1b** was very reactive and was converted quantitatively within 10 min. Notably, the reaction can be conducted under an air atmosphere (Table 2, entry 5). Nitrogen-tethered dienyne **1e** also afforded the annulation product in excellent yield (Table 2, entry 6). It seems that

Table 1: Optimization of reaction conditions.

{RhCl(cod)} ₂] (2.5)	(20)				2a	3 a
{RhCl(cod)} ₂] (2.5)	(20)					эa
	tppts (20)	none	50	720 (12 h)	51	14
$\{RhCl(cod)\}_2$ (2.5)	tppts (20)	Oct ₃ NMeCl (2.0)	50	120	32	_
$\{RhCl(cod)\}_2$ (2.5)	tppts (20)	TritonX-100 (2.0)	50	120	27	_
$\{RhCl(cod)\}_{2}$] (2.5)	tppts (20)	SDS (2.0)	50	120	91	_
$\{RhCl(cod)\}_{2}$] (2.5)	tppts (20)	SDS (2.0)	25	120	_	_
$\{RhCl(cod)\}_2$ (2.5)	dppb (5)	SDS (2.0)	25	60	6	_
{RhCl(cod)} ₂] (2.5)	none	SDS (2.0)	25	60	96	_
{RhCl(cod)} ₂] (1.25)	none	SDS (2.0)	25	20	26	_
$RhCl(PPh_3)_3]$ (1.25)	none	SDS (2.0)	25	20	_	_
$\{RhOH(cod)\}_2$] (1.25)	none	SDS (2.0)	25	20	_	_
$\{RhCl(nbd)\}_{2}$ (1.25)	none	SDS (2.0)	25	20	93	_
$\{RhCl(CH_2=CH_2)_2\}_2\}$ (1.25)	none	SDS (2.0)	25	20	_	_
$\{RhCl(nbd)\}_{2}$ (1.25)]	none	MeOSO ₃ Na (2.0)	25	20	_	_
${RhCl(nbd)}_{2}$ (1.25)]	none	SDS (0.025)	25	20	43	-
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	[RhCl(cod)} ₂] (2.5) [RhCl(cod)} ₂] (1.25) [RhCl(PPh ₃) ₃] (1.25) [RhOH(cod)} ₂] (1.25) [RhCl(nbd)} ₂] (1.25) [RhCl(nbd)} ₂] (1.25) [RhCl(nbd)} ₂] (1.25)	{RhCl(cod)}_2 (2.5) tppts (20) {RhCl(cod)}_2 (2.5) tppts (20) {RhCl(cod)}_2 (2.5) tppts (20) {RhCl(cod)}_2 (2.5) dppb (5) {RhCl(cod)}_2 (2.5) none {RhCl(cod)}_2 (1.25) none {RhCl(pPh ₃) ₃ (1.25) none {RhOH(cod)}_2 (1.25) none {RhCl(nbd)}_2 (1.25) none {RhCl(rbd)}_2 (1.25) none {RhCl(CH ₂ =CH ₂) ₂ } (1.25) none {RhCl(nbd)}_2 (1.25) none	{RhCl(cod)}_2 (2.5) tppts (20) TritonX-100 (2.0) {RhCl(cod)}_2 (2.5) tppts (20) SDS (2.0) {RhCl(cod)}_2 (2.5) tppts (20) SDS (2.0) {RhCl(cod)}_2 (2.5) dppb (5) SDS (2.0) {RhCl(cod)}_2 (2.5) none SDS (2.0) {RhCl(cod)}_2 (1.25) none SDS (2.0) {RhCl(pPh3)3} (1.25) none SDS (2.0) {RhOH(cod)}_2 (1.25) none SDS (2.0) {RhCl(nbd)}_2 (1.25) none SDS (2.0) {RhCl(nbd)}_2 (1.25) none SDS (2.0) {RhCl(CH2=CH2)2}2 (1.25) none SDS (2.0) {RhCl(nbd)}_2 (1.25) none MeOSO3Na (2.0)	{RhCl(cod)} ₂ (2.5) tpts (20) TritonX-100 (2.0) 50 {RhCl(cod)} ₂ (2.5) tpts (20) SDS (2.0) 50 {RhCl(cod)} ₂ (2.5) tpts (20) SDS (2.0) 25 {RhCl(cod)} ₂ (2.5) dppb (5) SDS (2.0) 25 {RhCl(cod)} ₂ (2.5) none SDS (2.0) 25 {RhCl(cod)} ₂ (1.25) none SDS (2.0) 25 RhCl(PPh ₃) ₃ (1.25) none SDS (2.0) 25 {RhOH(cod)} ₂ (1.25) none SDS (2.0) 25 {RhCl(nbd)} ₂ (1.25) none SDS (2.0) 25 {RhCl(CH ₂ =CH ₂) ₂ } ₂ (1.25) none SDS (2.0) 25 {RhCl(nbd)} ₂ (1.25) none SDS (2.0) 25 {RhCl(nbd)} ₂ (1.25) none SDS (2.0) 25 {RhCl(nbd)} ₂ (1.25) none SDS (2.0) 25	{RhCl(cod)}_2 (2.5) tppts (20) TritonX-100 (2.0) 50 120 {RhCl(cod)}_2 (2.5) tppts (20) SDS (2.0) 50 120 {RhCl(cod)}_2 (2.5) tppts (20) SDS (2.0) 25 120 {RhCl(cod)}_2 (2.5) dppb (5) SDS (2.0) 25 60 {RhCl(cod)}_2 (2.5) none SDS (2.0) 25 60 {RhCl(cod)}_2 (1.25) none SDS (2.0) 25 20 RhCl(PPh ₃) ₃ (1.25) none SDS (2.0) 25 20 {RhOH(cod)}_2 (1.25) none SDS (2.0) 25 20 {RhCl(nbd)}_2 (1.25) none SDS (2.0) 25 20 {RhCl(nbd)}_2 (1.25) none SDS (2.0) 25 20 {RhCl(CH ₂ =CH ₂) ₂ } ₂ (1.25) none SDS (2.0) 25 20 {RhCl(nbd)}_2 (1.25) none SDS (2.0) 25 20 {RhCl(nbd)}_2 (1.25) none SDS (2.0) 25 20	$ \begin{array}{llllllllllllllllllllllllllllllllllll$

Table 2:	Rhodium-cataly:	zed int	ramolecu	ılar [4+2] annulatio	on in v	vater. ^[a]
Entry	Dienyne		t [min]	Product		Yield [%]
1	1 a		25	2a		93
2	но	1 b	10	HO	2b	97
3	BnO	1 c	60	BnO	2 c	99
4	Me ₃ Si	1 d	120	H SiMe ₃	2 d	95
5 ^[b]	1 d		120	2d		92
6	NBn	1e	30	NBn	2 e	96
7 ^[c]	E E	1 f	(24 h)	H E E	2 f	71

[a] Reaction conditions: [{RhCl(nbd)}₂] (0.0031 mmol), sodium dodecyl sulfate (0.5 mmol), H₂O (2.5 mL), 1 (0.25 mmol), room temperature. [b] The reaction was carried out under air. [c] $E = CO_2Et$.

increased hydrophobicity of the substrate retards the reaction. The reaction with highly hydrophobic substrate 1f was sluggish and took 24 h to provide the product in satisfactory yield (Table 2, entry 7).

We propose that rhodium chloride dissociates to provide a reactive cationic rhodium species in highly polarized reaction media (Scheme 1). In fact, a significant amount of chloride

$$[\{RhCl(nbd)\}_2] + H_2O \xrightarrow{SDS} [Rh(nbd)(H_2O)_n]^+ + [Cl(H_2O)_m]^-$$

Scheme 1. Dissociation of the Rh-Cl bond in water.

anion was detected in the catalyst solution by ion-electrode analysis. The concentration of Cl- in the catalyst solution of [{RhCl(nbd)}₂]-SDS was measured to be $2.54 \times$ 10⁻³ mol L⁻¹ by ion-electrode analysis, whereas it was calculated to be $2.50 \times 10^{-3} \text{ mol L}^{-1}$, provided that the Rh-Cl bond is completely dissociated. This result strongly suggests the formation of cationic rhodium in the presence of SDS. On the other hand, [Cl $^-$] was 1.29 × 10⁻³ mol_L⁻¹ in an aqueous solution of [{RhCl(nbd)}₂]-Triton X100. An anionic surfactant is essential for the efficient formation of cationic rhodium species.

In water, SDS forms micelles, which are negatively charged owing to the sulfate groups. The

anionic charge of the micelles would concentrate the cationic rhodium species, which induces rapid conversion of dienyne 1 (Scheme 2). The fact that cationic and neutral surfactants did

Scheme 2. Presumed formation of micellar catalyst.

not work highlights the importance of the charge interaction between the anionic micelle and the cationic rhodium species. Furthermore, sodium methyl sulfate instead of SDS yielded none of the desired products (Table 1, entry 13). It is known that sodium methyl sulfate does not form micelles.^[9] Furthermore, the reaction was significantly slow below the critical micelle concentration of SDS (Table 1, entry 14). Micelle formation is crucial for this reaction system. Furthermore, both $[\{RhCl(nbd)\}_2]$ and the $[\{RhCl(nbd)\}_2]$ -SDS combination did not exhibit catalytic activity at all in organic solvents such as dichloromethane or benzene.

To our surprise, the reaction of 1g provided the intermolecular annulation product 4, the dimer of 1g, in 67 % yield as a single stereoisomer in an aqueous reaction system (Scheme 3).^[10] In organic solvents, the reaction of **1g** usually provides intramolecular annulation products under rhodium catalysis. Very recently, Gilbertson and DeBoef reported

Scheme 3. Rhodium-catalyzed intermolecular [2+2+2] annulation.

Zuschriften

intermolecular [4+2+2] annulation of **1g** with terminal alkynes.^[11] It is intriguing that **1g** undergoes three distinct modes of annulation reactions under rhodium catalysis: intramolecular [4+2], intermolecular [4+2+2], and intermolecular [2+2+2] annulations, depending on the fine-tuned reaction conditions.

In conclusion, the combination of [{RhCl(nbd)}₂]–SDS in water provides cationic rhodium species that act as a highly active catalyst system for intramolecular [4+2] annulation of 1,3-dien-8-ynes. Further research on the exact nature of the catalyst combination is currently underway in our laboratory.

Experimental Section

In a 20-mL flask, [{RhCl(nbd)}₂] (1.5 mg, 0.00313 mmol) and sodium dodecyl sulfate (144 mg, 0.5 mmol) were placed under an argon atmosphere. Pure water (2.5 mL) was introduced, and the mixture was stirred at room temperature for 10 min. A clear, yellow solution was obtained. Hexa-2,4-dienyl 3-phenylprop-2-ynyl ether (1a, 52.3 mg, 0.246 mmol) was added to the mixture through a microsyringe. The mixture was stirred vigorously for 20 min and then extracted with ethyl acetate. The organic extracts were dried through a short pad of silica gel on a Na₂SO₃ layer. Concentration followed by purification of the residual oil afforded 6-methyl-7-phenyl-1,3,3a,6-tetrahydroisobenzofuran (2a, 48.6 mg, 0.23 mmol) in 93 % yield.

Received: October 21, 2003 [Z53123]

Keywords: alkynes · cycloaddition · dienes · micelles · rhodium

- [1] M. Suginome, Y. Ito in *Encyclopedia of Reagents for Organic Synthesis* (Ed.: L. Paquette), Wiley, Chichester, **1995**, p. 426.
- [2] R. R. Schrock, J. A. Osborn, J. Am. Chem. Soc. 1971, 93, 3090.
- [3] The formation of cationic rhodium complexes in polar solvents was reported; however, the addition of excess phosphane ligands is required: R. R. Schrock, J. A. Osborn, *J. Am. Chem. Soc.* **1971**, 93, 2397.
- [4] For reviews on metal-catalyzed cycloaddition, see: a) M. Lautens, W. Klute, W. Tam, Chem. Rev. 1996, 96, 49; b) I. Ojima, M. Tzamarioudaki, Z. Li, R. J. Donovan, Chem. Rev. 1996, 96, 635; c) M. Murakami, Angew. Chem. 2003, 115, 742; Angew. Chem. Int. Ed. 2003, 42, 718.
- [5] a) R. S. Jolly, G. Leudtke, D. Sheehan, T. Livinghouse, J. Am. Chem. Soc. 1990, 112, 4965; b) S. R. Gilbertson, G. S. Hoge, Tetrahedron Lett. 1998, 39, 2075; c) S.-J. Paik, S. U. Son, Y. K. Chung, Org. Lett. 1999, 1, 2045; d) P. A. Wender, T. E. Jenkins, J. Am. Chem. Soc. 1989, 111, 6432; e) S. R. Gilbertson, G. S. Hoge, D. G. Genov, J. Org. Chem. 1998, 63, 10077; f) I. Matsuda, M. Shibata, S. Sato, Y. Izumi, Tetrahedron Lett. 1987, 28, 3361; g) B. Wang, P. Cao, X. Zhang, Tetrahedron Lett. 2000, 41, 8041.
- [6] For recent examples of rhodium-catalyzed reactions in aqueous media, see: a) T. Dwars, G. Oehme, Adv. Synth. Catal. 2002, 344, 239; b) T. Dwars, U. Schmidt, C. Fischer, I. Grassert, R. Kempe, R Fröhlich, K. Drauz, G. Oehme, Angew. Chem. 1998, 110, 3033; Angew. Chem. Int. Ed. 1998, 37, 2851; c) R. Selke, J. Holz, A. Riepe, A. Börner, Chem. Eur. J. 1998, 4, 769; d) M. Ludwig, R. Kadyrov, H. Fiedler, K. Haage, R. Selke, Chem. Eur. J. 2001, 7, 3298; e) K. Fuji, T. Morimoto, K. Tsutsumi, K. Kakiuchi, Angew. Chem. 2003, 115, 2511; Angew. Chem. Int. Ed. 2003, 42, 2409; f) H. Kinoshita, H. Shinokubo, K. Oshima, J. Am. Chem. Soc. 2003, 125, 7784; g) M. Lautens, A. Roy, K. Fukuoka, K. Fagnou, B. Martín-Matute, J. Am. Chem. Soc. 2001, 123, 5358; h) M. Sakai, M. Ueda, N. Miyaura, Angew. Chem. 1998, 110, 3475; Angew. Chem. Int. Ed. 1998, 37,2409; i) R. Itooka, Y. Iguchi, N.

- Miyaura, *Chem. Lett.* **2001**, 722; j) K. Yonehara, K. Ohe, S. Uemura, *J. Org. Chem.* **1999**, *64*, 9381; k) T. Huang, Y. Meng, S. Venkatraman, D. Wang, C.-J. Li, *J. Am. Chem. Soc.* **2001**, *123*, 7451.
- [7] a) C.-J. Li, T.-H. Chan, Organic Reactions in Aqueous Media, John Wiley, New York, 1997; b) Organic Synthesis in Water (Ed.: P. A. Grieco), Blackie Academic & Professional, London, 1998; c) A. Lubineau, J. Augé in Modern Solvent in Organic Synthesis (Ed.: P. Knochel), Springer, Berlin, 1999, p. 1; d) D. Sinou in Modern Solvents in Organic Synthesis, (Ed.: P. Knochel), Springer, Berlin, 1999, p. 41; e) B. Cornils, W. A. Herrmann, Aqueous-Phase Organometallic Chemistry, Wiley-VCH, Weinheim, 1998.
- [8] a) S. Kobayashi, K. Manabe, Acc. Chem. Res. 2002, 35, 209; b) K. Manabe, S. Iimura, X.-M. Sun, S. Kobayashi, J. Am. Chem. Soc. 2002, 124, 11971, and references therein.
- [9] a) T. Rispens, J. B. F. N. Engberts, J. Org. Chem. 2002, 67, 7369;
 b) A. J. Prosser, E. I. Franses, Langmuir 2002, 18, 9234.
- [10] For the rhodium-catalyzed cyclodimerization of enynes, see: a) R. Grigg, R. Scott, P. Stevenson, J. Chem. Soc. Perkin Trans. 1 1998, 1365; b) C. H. Oh, H. R. Sung, S. H. Jung, Y. M. Lim, Tetrahedron Lett. 2001, 42, 5493.
- [11] S. R. Gilbertson, B. DeBoef, J. Am. Chem. Soc. 2002, 124, 8784.